- Évariste Galois:
Évariste Galois (25 de octubre de 1811 - 31 de mayo de 1832) Era un joven matemático francés nacido en Bourg-la-Reine. Mientras aún era un adolescente, fue capaz de determinar la condición necesaria y suficiente para que un polinomio sea resuelto por radicales, dando una solución a un problema que había permanecido sin resolver. Su trabajo ofreció las bases fundamentales para la teoría que lleva su nombre, una rama principal del álgebra abstracta. Fue el primero en utilizar el término "grupo" en un contexto matemático. La teoría constituye una de la bases matemáticas de la modulación CDMA utilizada en comunicaciones y, especialmente, en los Sistemas de navegación por satélite, como GPS, GLONASS, etc.
- Biografía:
Mediante dicho proceso, que en terminología actual equivale al de hallar el grupo de automorfismos de un cuerpo, sentó las bases de la moderna teoría de grupos, una de las ramas más importantes del álgebra. Galois intuyó que la solubilidad mediante radicales estaba sujeta a la solubilidad del grupo de automorfismos relacionado.
A pesar de sus revolucionarios descubrimientos, o tal vez por esa misma causa, todas las memorias que publicó con sus resultados fueron rechazadas por la Academia de las Ciencias, algunas de ellas por matemáticos tan eminentes como Cauchy, Fourier o Poisson. Subsiguientes intentos de entrar en la Escuela Politécnica se saldaron con sendos fracasos, lo cual le sumió en una profunda crisis personal, agravada en 1829 por el suicidio de su padre.
- Su obra:
La aportación de Evariste Galois a las matemáticas no es sencilla de entender por su complejidad y la novedad, incluso para los tiempos actuales, que encierra en su interior. No fue completamente comprendida por los matemáticos de su época, algunos sencillamente la ignoraron, y hasta finales del siglo XIX no se descubrió su profundidad y alcance.
Se centra fundamentalmente en el campo del álgebra, rama a la que dió un impulso casi definitivo. Sus investigaciones dieron lugar a la llamada Teoría de Grupos y Cuerpos de Galois. Para hacernos una idea de su importancia baste decir que las estructuras algebráicas llamadas Grupos de Galois son utilizadas asiduamente en los tiempos actuales en ramas de la técnica como la Criptografía, la Informática o las Telecomunicaciones.
En estas páginas nos vamos a centrar, de una forma muy resumida, en dos de sus campos de trabajo fundamentales: la resolución de ecuaciones polinómicas y la noción de Grupo de Galois.
Resolución de ecuaciones polinómicas
Nosotros sabemos resolver ecuaciones cuadráticas (de grado 2) de la forma ax2+bx+c=0. Resolver una ecuación consiste en encontrar el o los valores de x que hacen que la igualdad anterior sea cierta. Conocemos una fórmula general para encontrar esos valores de x (llamados raices) para las ecuaciones de grado 2. Dicha fórmula es la siguiente:
x = -b ± Ö(b2 - 4ac)
------------------
2a
De igual modo se conocen, y se conocían en época de Galois, fórmulas similares, aunque bastante más complejas, para resolver ecuaciones de grado 3 y 4.
Sin embargo, cuando nos enfrentamos con ecuaciones de grado 5 las cosas se tuercen. Galois trabajó durante mucho tiempo en la obtención de una fórmula general válida para ecuaciones de grado 5 y superiores. Normalmente sus esfuerzos concluian en ecuaciones erróneas y más complicadas de resolver que la ecuación original. Finalmente demostró, casi simultaneamente con otro brillante matemático llamado Niels Henrik Abel, la imposibilidad de encontrar una solución general a estas ecuaciones utilizando únicamente la suma, la resta, la multiplicación, la división, la exponenciación y la radicación de los coeficientes (es decir, mediante radicales). Llegó a la conclusión de que dichas ecuaciones sólo pueden resolverse de forma aproximada utlizando técnicas de cálculo numérico. Sin embargo, existen muchas ecuaciones de grado 5 y superiores perfectamente resolubles mediante radicales. Son casos particulares, pero Galois enunció y demostró un teorema, a veces llamado teorema de Galois, para identificar dichas ecuaciones. Dice así: «Si en una ecuación polinómica la potencia más alta es un múmero primo y si, supuesto conocidos dos valores de la x, los demás se pueden obtener a partir de ellos usando únicamente la suma, la resta, la multiplicación y la división, entonces la ecuación puede ser resuelta mediante radicales.»
Noción de Grupo de Galois
La aportación más importante que Evariste Galois hizo a las matemáticas de su tiempo fue el concepto de Grupo. Le fue necesario construirlo para encontrar una forma más general y menos engorrosa que la que porporcionaba el teorema anteriormente enunciado, de identificar las ecuaciones de grado 5 y superiores resolubles mediante radicales. El concepto no es en absoluto sencillo e intentaremos introducirlo de la forma más somera e inteligible posible.
No hay comentarios:
Publicar un comentario